

ADL400

Installation and operation instruction T1.2

ACREL Co.,Ltd

Declaration

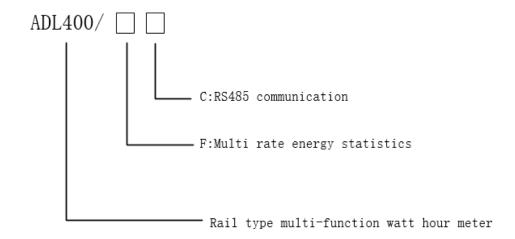
The copyright is the property of Acrel. Any information in any paragraph or section cannot be extracted, copied or otherwise reproduced or propagated. Otherwise offenders shall take all consequences.

All rights are reserved.

Acrel reserves the right to modify the product specifications herein without notification. Please consult the local agent about the latest specifications before placing a purchase order.

Manual revision record

Data	Old	New	Change
2024. 8. 28		T1.0	1. First version, Add 277/480V options
2024. 9. 18	T1.0	T1. 1	2. Add a fast response address table
2025. 3. 05	T1. 1	T1. 2	3. Add dimensional tolerance


content

1	General
2	Type description
3	Function description
4	Technical parameter
5	Outline
6	Wiring and installing
7	Function description
8	Operation and display
9	Communication description

1 General

ADL400 is a smart meter designed for power supply system, industrial and mining enterprises and utilities to calculate the electricity consumption and manage the electric demand. It features the high precision, small size and simple installation. It integrates the measurement of all electrical parameters with the comprehensive electricity metering and management provides various data on previous 48 months, checks the 31st harmonic content and the total harmonic content. It is fitted with RS485 communication port and adapted to MODBUS-RTU .ADL400 can be used in all kinds of control systems, SCADA systems and energy management systems. The meter meet the related technical requirements of electricity meter in the IEC62053-21standards.

2 Type description

3 Function description

Table 1 Function description list

Function	Function Function description	
Measurement of	Active kWh (positive and negative)	
	Reactive kvarh (positive and negative)	
energy	A,B,C split phase active energy	
Measurement of	U、I	
electrical	D 0 0 DF F	
parameters	P、Q、S、PF、F	
Measurement of	2~31 ST Voltage and Current harmonic	_
harmonics	2791 Voltage and Current narmome	_
LCD Display	12 bits section LCD display, background light	
Key	Key 2 trave to communication and get necessarian	
programming	3 keys to communication and set parameters	-

Pulse output	Active pulse output	
	Date, time	
Multi-tariff and	Max demand and occurrence time	
functions	Frozen data on last 48 months, last 90days	
	Adapt 14 time zones, 8 time interval lists, 14	
	time interval by day and 8 tariff rates	
Communication	Communication interface: RS485,	
Communication	Communication protocol: MODBUS-RTU	

4 Technical parameter

Table 2 technical parameter descriptions

Table 2 technical parameter descriptions								
project			performance parameter					
	Specifi	cation	3 phase 3 wires	3 phase 4 wires				
		Reference voltage	3×100V, 3×380V, 3×480V	3×57.7/100V, 3×220/380V, 3× 277/480V				
	X7-14	Voltage range	$3 \times 100 \text{V} - 3 \times 450 \text{V}$	3×57.7/100V - 3×260/450V				
	Voltage	Consumption	<10VA(Single phase)					
Measure		Impedance	>2ΜΩ					
ment		Accuracy class	Error ± 0.2%					
ment		Input current	$3 \times 1(6)$ A, $3 \times 10(80)$ A					
	Current	Consumption	<1VA Single phase rated curre	ent				
		Accuracy class	Error $\pm 0.2\%$	<u> </u>				
	Power		Active, reactive, apparent power, error $\pm 0.5\%$					
		Frequency	$45\sim65$ Hz, Error $\pm0.2\%$					
Metering	Energy		Active energy(Accuracy class: 0.5); reactive energy(Accuracy class 2)					
Wictoring		Clock	$\leq 0.5 \text{s/d}$					
Digit signal	Ener	gy pulse output	1 active photocoupler output					
1	W	idth of pulse	80±20ms					
pulse	Pulse constant		400imp/kWh,10000imp/kWh((Correspond with the basic current)				
	Interface	and communication						
communi	protocol		RS485: Modbus RTU					
cation	Range of communication address		Modbus RTU:1~254;					
		Baud rate	1200bps~38400bps					
envir-on	work	ing temperature	-25℃~+55℃					
ment	Relative humidity		≤95%(No condensation)					

Attention: 2*277/480V Only for secondary access

5 Dimension drawings

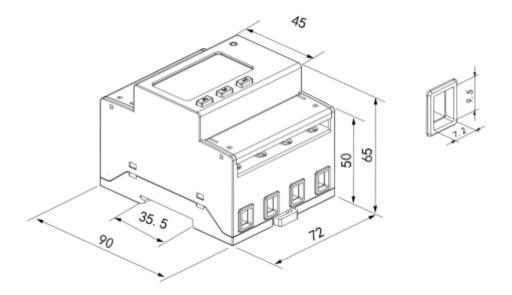


Fig 1 direct connect

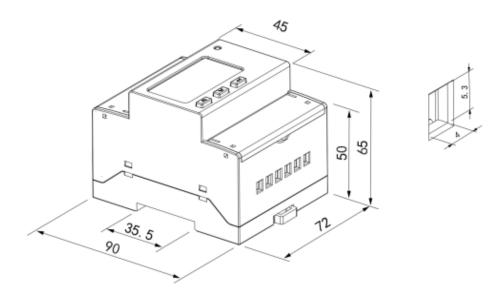


Fig 2 connect via CT

Note:

- 1. The torque of direct connect should not be greater than 3-4N·m , and the torque of connect via CT should not be greater than 1.5-2N·m $_\circ$
- 2. Product external dimensional tolerance: $\pm 1 \text{mm}$; Terminal hole dimensional tolerance: $\pm 0.5 \text{mm}_{\circ}$

6 Wiring and installing

6.1 Wiring sample of voltage and current

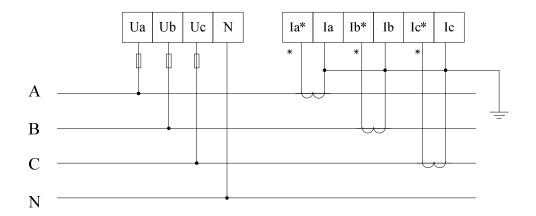


Fig 3 Three phase four lines connect via CT

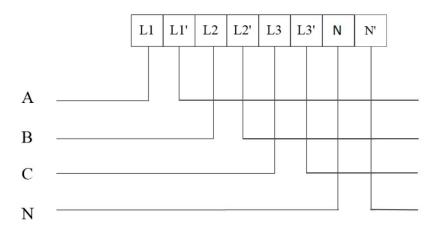


Fig 4 Three phase four lines direct connect

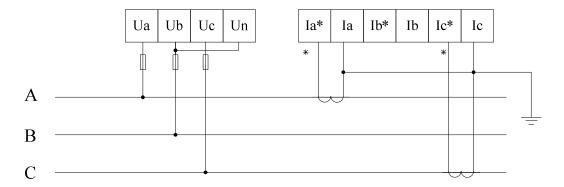


Fig 5 Three phase three lines connect via CT

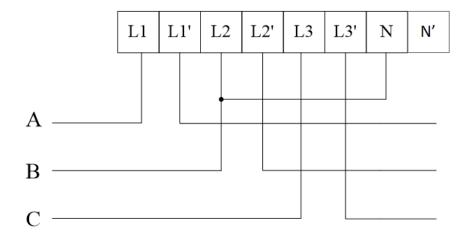


Fig 6 Three phase three lines direct connect

6.2 Wiring diagram of communication and pulse terminals

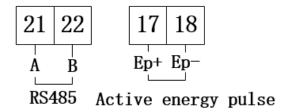


Fig 7 Communication, pulse connection

7 Function description

7.1 Measurement

It can measure the electrical parameter, include U , I , P , Q , S , PF , F , $1\sim31$ th harmonic \circ Such as: U = 220.1V, f = 49.98Hz, I = 1.99A, P = 0.439kW

7.2 Metering

Can measure the active energy, forward active energy, reversing active energy, forward reactive energy, reversing reactive energy.

7.3 Timing

Eight timing tables, fourteen time zones, one table has fourteen timing, eight rates.

7.4 Demand

The description about demand:

Table 3 Demand description list

Demand	The average power in the demand cycle.				
Maximum	The maximum value of demand in a period of time.				
demand					
Clim times	A recurrence method to measure the demand from any time point				
Slip time	during a period shorter than the demand period. The demand				

	measured by this means is called sliding demand. The recurrence time is sliding window time.
Demand	The time period between two same average value of demand.
cycle	The time period control in a same average value of asimular

The default demand cycle is 15 minutes, slip time is 1 minute.

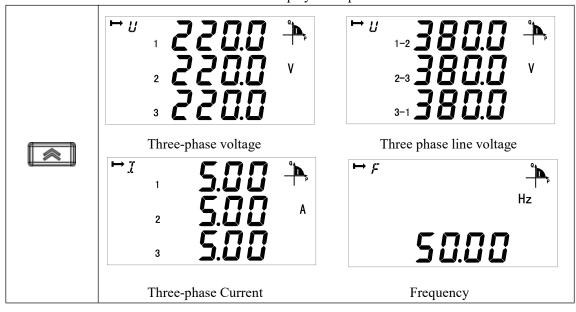
The meter can measure 4 kinds of maximum demand: forward active, reversing active, inductive reactive, capacitive reactive maximum demand and the occur time of them.

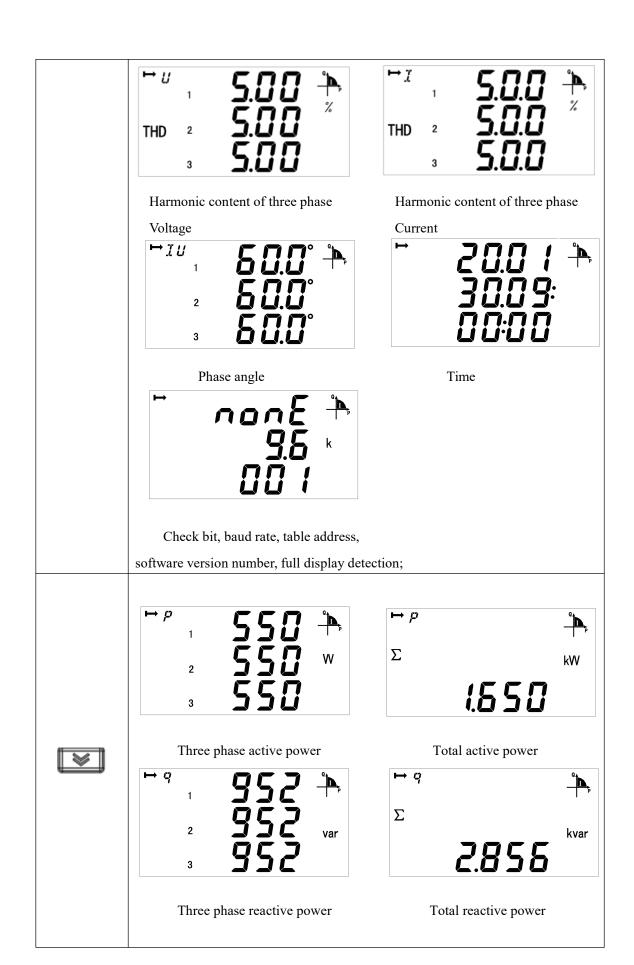
7.5 History data statistics

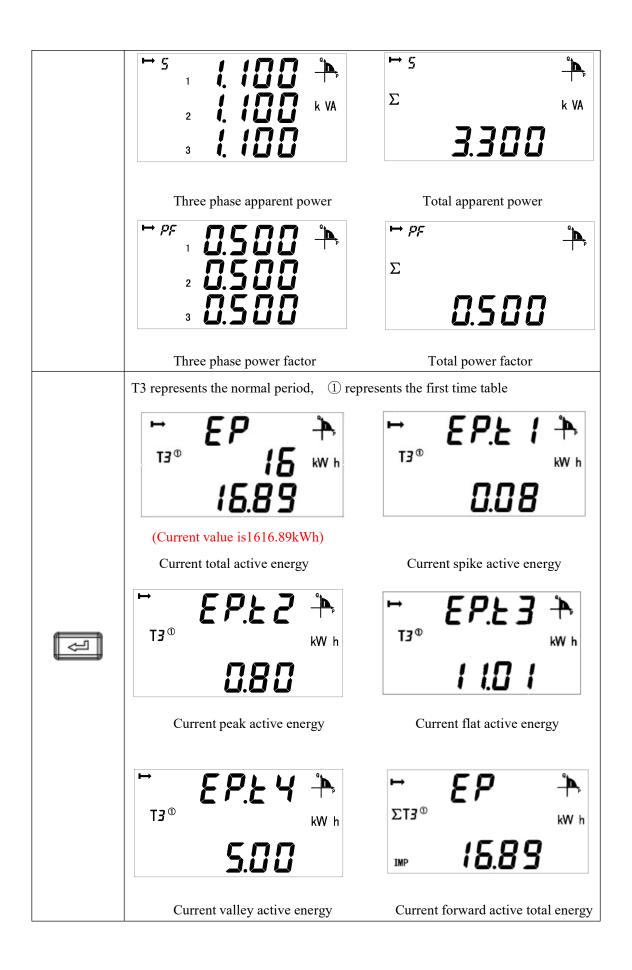
The meter can record last 48 months or last 90 days history energy in each tariff.

8 Operation and display

8.1 Key function description


Table 4 Key's function description


icon	Name	Function
	Voltage and current Up key	Check the voltage and current Leftward and change flash in programming menu
	Power Down key	Check the power Rightward and change the value on flash
	Energy Enter key	Check the energy In/out programming menu Save changes


8.2 Display menu

The meter will show the forward active energy after powering. The customers can change the information showing by pressing the keys. The menu description is listed as below:

Table 5 display descriptions

Current reversing active total energy

Current reactive spike energy

Current reactive flat energy

Current forward reactive total energy

Current forward active energy

on A phase

Current forward active energy on C phase

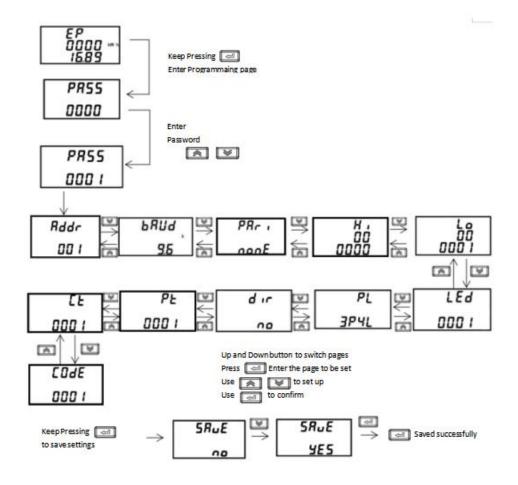
Current total reactive energy

Current reactive peak energy

Current reactive valley energy

Current reversing reactive total energy

Current forward active energy on B phase


Note:

- 1 All the display menus above are in the model of ADL400 three phases four lines with multi-tariff rate function and can be changed by the keys.
- 2 There will not be power or power factor on each phase and will only show total power and power factor (Active, reactive, apparent) under the three phase three lines.
- 3 There will not be date, time, maximum demand and energy by time without the function of multi-tariff rate.
- 4 The amount of rate energy displayed is determined by the maximum rate of the set time meter, for example, if the maximum rate set is T5 (rate 5), then the meter displays the rate energy 1-5.
- 5 When the energy is displayed, when the number of digits exceeds 4 digits, it is displayed in two lines, and it can be read continuously. The graph below shows an electrical energy value of 1616.89 kWh. The direct access model energy data shows 2 decimal places, and the secondary access model energy data shows 1 decimal place.

8.3 Key Menu

Keep press at any main menu and get in "PASS" interface, and then press show "0000", and enter the code. If you enter a wrong code, it will show "fail" and back to main menu; and if you enter a right code, you can set the parameter. After setting the parameter and keep press in, it will show "save" and save the change by pressing in "yes" interface in "no" interface.

8.4 Data settings

Table 6 Menu description

Name	Second menu				
Num	Symbol	Mean	Range		
1	ADDR	Communicate's ADDR settings	1-254		
2	Baud	Baud choose	1200、2400、4800、 <mark>9600</mark> 、19200、		
3	Pari	Parity choose	38400 None Odd Even		
4	LED	Backlight time	0-255minutes, more than 000 stay light-on		
•	LLD	Buckinght time	Default value: 1min		
5	PL	PL Wiring sample	3P4L:3 phase 4 wires		
			3P3L:3 phase 3 wires		
6	DIR	direction of current	yes-Reverse		
7	S-TY	Apparent power calculation method	PQS RMS		
0	EE E	. 1	EF-Function on		
8	EF-E	time-sharing measurement function	E-Function off		
9	Pt	Voltage transformer settings	<mark>1</mark> -9999		

10	Ct	Current transformer settings	1-9999		
11	CoDE	Code settings	<mark>1</mark> -9999		
			No-Angle between each current		
12	PHAS	DI 1 1 1	and each voltage		
12	РПАЗ	Phase angle calculation method	Yes-Angle between three-phase		
			current and phase a voltage		
1.2	nost	Stanting mayzan shield	Shielding range: <mark>0.1</mark> -2.0%		
13	nost Starting power shield	Starting power shield	(*UnIn)		

Note: Marked yellow is the default value.

9 Communication description

The meter adapts MODBUS-RTU protocol, and the baud rate can be chosen from 1200bps 2400 bps 4800 bps 9600bps 19200bps and 38400 bps. The parity defaults to None.

The meter needs shielded twisted pair conductors to connect. Customers should consider the whole network's parameters such like communication wire's length, the direction, communication transformer and network cover range, etc.

Note:

- 1. Wiring should follow the wiring requirements;
- 2. Connect all the meter in the RS485 net work even some do not need to communication, which is benefit for error checking and testing.
 - 3. Use two color wires in connecting wires and all the A port use the same color.
 - 4. No longer than 1200 meters of RS485 bus line.

9.1 ADDR List

MODBUS-RTU protocol has 03H and 10H command to read and write registers respectively. The following chart is registers' address list:

Address	Name	R/W	Length (Bytes)	Туре	Unit	Note
008DH	PT	R/W	1	uint16		
008EH	CT	R/W	1	uint16		
1000H	slave address	R/W	1	uint16		1-247
1001H	baud rate	R/W	1	uint16		1200, 2400, 4800, 9600, 19200, 38400,
1002Н	parity	R/W	1	uint16		Low byte 0: None 1: Odd 2: Even High byte 0: 1stop 1: 1.5stop

						2: 2stop
1010H	Grid	R/W	1	uint16		0:3P4L 1:3P3L
101DH	Password	R/W	1	uint16		1-9999
1035H	Apparent power calculation mode	R/W	1	uint16		0: RMS 1: PQS
2000H	A-phase voltage	R	2	float	V	
2002H	B-phase voltage	R	2	float	V	
2004H	C-phase voltage	R	2	float	V	
2006Н	AB-line voltage	R	2	float	V	
2008H	BC-line voltage	R	2	float	V	
200AH	CA-line voltage	R	2	float	V	
200CH	A-phase current	R	2	float	A	
200EH	B-phase current	R	2	float	A	
2010H	C-phase current	R	2	float	A	
2012H	N-phase current	R	2	float	A	
2014H	A-phase active power	R	2	float	kW	
2016Н	B-phase active power	R	2	float	kW	
2018H	C-phase active power	R	2	float	kW	
201AH	Total active power	R	2	float	kW	1.Slow register
201CH	A-phase reactive power	R	2	float	Kvar	
201EH	B-phase reactive power	R	2	float	Kvar	
2020Н	C-phase reactive power	R	2	float	Kvar	
2022H	total reactive power	R	2	float	Kvar	
2024H	A-phase apparent power	R	2	float	KVA	
2026Н	B-phase apparent power	R	2	float	KVA	
2028H	C-phase apparent power	R	2	float	KVA	
202AH	Total apparent power	R	2	float	KVA	
202CH	A-phase power factor	R	2	float		
202EH	B-phase power factor	R	2	float		
2030Н	C-phase power factor	R	2	float		
2032Н	Total power factor	R	2	float		
2034Н	Frequency	R	2	float	Hz	
2100Н	A-phase voltage	R	2	float	V	
2102H	B-phase voltage	R	2	float	V	1.Fast register
2104Н	C-phase voltage	R	2	float	V	(response rate <=100ms)
2106Н	AB-line voltage	R	2	float	V	
2108H	BC-line voltage	R	2	float	V	

210AH	CA-line voltage	R	2	float	V
210CH	A-phase current	R	2	float	A
210EH	B-phase current	R	2	float	A
2110H	C-phase current	R	2	float	A
2112H	N-phase current	R	2	float	A
2114H	A-phase active power	R	2	float	kW
2116Н	B-phase active power	R	2	float	kW
2118H	C-phase active power	R	2	float	kW
211AH	Total active power	R	2	float	kW
211CH	A-phase reactive power	R	2	float	Kvar
211EH	B-phase reactive power	R	2	float	Kvar
2120H	C-phase reactive power	R	2	float	Kvar
2122H	total reactive power	R	2	float	Kvar
2124H	A-phase apparent power	R	2	float	KVA
2126Н	B-phase apparent power	R	2	float	KVA
2128H	C-phase apparent power	R	2	float	KVA
212AH	Total apparent power	R	2	float	KVA
212CH	A-phase power factor	R	2	float	
212EH	B-phase power factor	R	2	float	
2130H	C-phase power factor	R	2	float	
2132H	Total power factor	R	2	float	
2134H	Frequency	R	2	float	Hz
3000H	active electric energy	R	4	double	kWh
3004H	forward active electric energy	R	4	double	kWh
3008H	reverse active electric energy	R	4	double	kWh
300CH	reactive electric energy	R	4	double	kVarh
3010H	forward reactive electric energy	R	4	double	kVarh
3014H	reverse reactive electric energy	R	4	double	kVarh
3018H	apparent electric energy	R	4	double	kVAh
301CH	active electric energy of phase A	R	4	double	kWh
3020H	forward active electric energy of phase A	R	4	double	kWh
3024H	reverse active electric energy of phase A	R	4	double	kWh
3028H	reactive electric energy of phase A	R	4	double	kVarh
302CH	forward reactive electric energy of phase A	R	4	double	kVarh

3030Н	reverse reactive electric energy of phase A	R	4	double	kVarh	
3034H	active electric energy of phase B	R	4	double	kWh	
3038H	forward active electric energy of phase B	R	4	double	kWh	
303CH	reverse active electric energy of phase B	R	4	double	kWh	
3040H	reactive electric energy of phase B	R	4	double	kVarh	
3044H	forward reactive electric energy of phase B	R	4	double	kVarh	
3048H	reverse reactive electric energy of phase B	R	4	double	kVarh	
304CH	active electric energy of phase C	R	4	double	kWh	
3050H	forward active electric energy of phase C	R	4	double	kWh	
3054Н	reverse active electric energy of phase C	R	4	double	kWh	
3058H	reactive electric energy of phase C	R	4	double	kVarh	
305CH	forward reactive electric energy of phase C	R	4	double	kVarh	
3060Н	reverse reactive electric energy of phase C	R	4	double	kVarh	

Headquarters: Acrel Co., Ltd.

Trade Company: Acrel E-Business(Shanghai)Co., Ltd.

Address: No.253 Yulv Road, Jiading District, Shanghai, China

TEL.: 0086-21-69156352

Web-site: www.acrel-electric.com

E-mail: sales@acrel-electric.com

Postcode: 201801

Manufacturer: Jiangsu Acrel Electrical Manufacturing Co., Ltd.

Address: No.5 Dongmeng Road, Dongmeng industrial Park, Nanzha Street, Jiangyin City, Jiangsu

Province, China

TEL./Fax: 0086-510-86179970

Web-site: www.jsacrel.com

E-mail: sales@email.acrel.cn

Postcode: 214405